1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use num::{Zero, One};
use std::hash;
use std::fmt;
use approx::ApproxEq;
#[cfg(feature = "serde-serialize")]
use serde;
#[cfg(feature = "serde-serialize")]
use core::storage::Owned;
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::Real;
use core::{DefaultAllocator, Scalar, MatrixN};
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
use core::allocator::Allocator;
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<N: Scalar, D: DimName>
where DefaultAllocator: Allocator<N, D, D> {
matrix: MatrixN<N, D>
}
impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.matrix.hash(state)
}
}
impl<N: Scalar, D: DimName> Copy for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy { }
impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone {
#[inline]
fn clone(&self) -> Self {
Rotation::from_matrix_unchecked(self.matrix.clone())
}
}
#[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Rotation<N, D>
where N: Scalar,
D: DimName,
MatrixN<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D, D>
{
unsafe fn entomb(&self, writer: &mut Vec<u8>) {
self.matrix.entomb(writer)
}
unsafe fn embalm(&mut self) {
self.matrix.embalm()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.matrix.exhume(bytes)
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Scalar, D: DimName> serde::Serialize for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: serde::Serialize {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer {
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar, D: DimName> serde::Deserialize<'a> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: serde::Deserialize<'a> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: serde::Deserializer<'a> {
let matrix = MatrixN::<N, D>::deserialize(deserializer)?;
Ok(Rotation::from_matrix_unchecked(matrix))
}
}
impl<N: Scalar, D: DimName> Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> {
#[inline]
pub fn matrix(&self) -> &MatrixN<N, D> {
&self.matrix
}
#[inline]
pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
&mut self.matrix
}
#[inline]
pub fn unwrap(self) -> MatrixN<N, D> {
self.matrix
}
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
where N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
res
}
#[inline]
pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Rotation<N, D> {
assert!(matrix.is_square(), "Unable to create a rotation from a non-square matrix.");
Rotation {
matrix: matrix
}
}
#[inline]
pub fn transpose(&self) -> Rotation<N, D> {
Rotation::from_matrix_unchecked(self.matrix.transpose())
}
#[inline]
pub fn inverse(&self) -> Rotation<N, D> {
self.transpose()
}
#[inline]
pub fn transpose_mut(&mut self) {
self.matrix.transpose_mut()
}
#[inline]
pub fn inverse_mut(&mut self) {
self.transpose_mut()
}
}
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> { }
impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> {
#[inline]
fn eq(&self, right: &Rotation<N, D>) -> bool {
self.matrix == right.matrix
}
}
impl<N, D: DimName> ApproxEq for Rotation<N, D>
where N: Scalar + ApproxEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy {
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.matrix.relative_eq(&other.matrix, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
}
}
impl<N, D: DimName> fmt::Display for Rotation<N, D>
where N: Real + fmt::Display,
DefaultAllocator: Allocator<N, D, D> +
Allocator<usize, D, D> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "Rotation matrix {{"));
try!(write!(f, "{:.*}", precision, self.matrix));
writeln!(f, "}}")
}
}