1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
use alga::general::{AbstractMagma, AbstractGroup, AbstractLoop, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Real, Inverse, Multiplicative, Identity};
use alga::linear::{Transformation, ProjectiveTransformation};
use core::{DefaultAllocator, VectorN};
use core::dimension::{DimNameSum, DimNameAdd, U1};
use core::allocator::Allocator;
use geometry::{Point, Transform, TCategory, SubTCategoryOf, TProjective};
impl<N: Real, D: DimNameAdd<U1>, C> Identity<Multiplicative> for Transform<N, D, C>
where C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: Real, D: DimNameAdd<U1>, C> Inverse<Multiplicative> for Transform<N, D, C>
where C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
#[inline]
fn inverse(&self) -> Self {
self.clone().inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: Real, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative> for Transform<N, D, C>
where C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: Real, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
macro_rules! impl_inversible_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: Real, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
);
impl_inversible_multiplicative_structures!(
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C>
where N: Real,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
Allocator<N, DimNameSum<D, U1>> +
Allocator<N, D, D> +
Allocator<N, D> {
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self * pt
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self * v
}
}
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C>
where N: Real,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
Allocator<N, DimNameSum<D, U1>> +
Allocator<N, D, D> +
Allocator<N, D> {
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse() * pt
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse() * v
}
}