1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
use alga::general::{AbstractMagma, AbstractGroup, AbstractLoop, AbstractMonoid, AbstractQuasigroup,
                    AbstractSemigroup, Real, Inverse, Multiplicative, Identity};
use alga::linear::{Transformation, ProjectiveTransformation};
use core::{DefaultAllocator, VectorN};
use core::dimension::{DimNameSum, DimNameAdd, U1};
use core::allocator::Allocator;
use geometry::{Point, Transform, TCategory, SubTCategoryOf, TProjective};
impl<N: Real, D: DimNameAdd<U1>, C> Identity<Multiplicative> for Transform<N, D, C>
    where C: TCategory,
          DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
    #[inline]
    fn identity() -> Self {
        Self::identity()
    }
}
impl<N: Real, D: DimNameAdd<U1>, C> Inverse<Multiplicative> for Transform<N, D, C>
    where C: SubTCategoryOf<TProjective>,
          DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
    #[inline]
    fn inverse(&self) -> Self {
        self.clone().inverse()
    }
    #[inline]
    fn inverse_mut(&mut self) {
        self.inverse_mut()
    }
}
impl<N: Real, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative> for Transform<N, D, C>
    where C: TCategory,
          DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
    #[inline]
    fn operate(&self, rhs: &Self) -> Self {
        self * rhs
    }
}
macro_rules! impl_multiplicative_structures(
    ($($marker: ident<$operator: ident>),* $(,)*) => {$(
        impl<N: Real, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
            where C: TCategory,
                  DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
    )*}
);
macro_rules! impl_inversible_multiplicative_structures(
    ($($marker: ident<$operator: ident>),* $(,)*) => {$(
        impl<N: Real, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
            where C: SubTCategoryOf<TProjective>,
                  DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
    )*}
);
impl_multiplicative_structures!(
    AbstractSemigroup<Multiplicative>,
    AbstractMonoid<Multiplicative>,
);
impl_inversible_multiplicative_structures!(
    AbstractQuasigroup<Multiplicative>,
    AbstractLoop<Multiplicative>,
    AbstractGroup<Multiplicative>
);
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C>
    where N:  Real,
          C:  TCategory,
          DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
                            Allocator<N, DimNameSum<D, U1>> +
                            Allocator<N, D, D> +
                            Allocator<N, D> {
    #[inline]
    fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
        self * pt
    }
    #[inline]
    fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
        self * v
    }
}
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C>
    where N:  Real,
          C:  SubTCategoryOf<TProjective>,
          DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
                            Allocator<N, DimNameSum<D, U1>> +
                            Allocator<N, D, D> +
                            Allocator<N, D> {
    #[inline]
    fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
        self.inverse() * pt
    }
    #[inline]
    fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
        self.inverse() * v
    }
}