1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#[cfg(feature = "serde-serialize")]
use serde;
use alga::general::Real;
use core::{SquareMatrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
use dimension::{DimSub, DimDiff, Dynamic, U1};
use storage::Storage;
use allocator::Allocator;
use constraint::{ShapeConstraint, DimEq};
use linalg::householder;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(serialize =
"DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: serde::Serialize,
VectorN<N, DimDiff<D, U1>>: serde::Serialize")))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(deserialize =
"DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: serde::Deserialize<'de>,
VectorN<N, DimDiff<D, U1>>: serde::Deserialize<'de>")))]
#[derive(Clone, Debug)]
pub struct Hessenberg<N: Real, D: DimSub<U1>>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>> {
hess: MatrixN<N, D>,
subdiag: VectorN<N, DimDiff<D, U1>>
}
impl<N: Real, D: DimSub<U1>> Copy for Hessenberg<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>>,
MatrixN<N, D>: Copy,
VectorN<N, DimDiff<D, U1>>: Copy { }
impl<N: Real, D: DimSub<U1>> Hessenberg<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> +
Allocator<N, DimDiff<D, U1>> {
pub fn new(hess: MatrixN<N, D>) -> Self {
let mut work = unsafe { MatrixMN::new_uninitialized_generic(hess.data.shape().0, U1) };
Self::new_with_workspace(hess, &mut work)
}
pub fn new_with_workspace(mut hess: MatrixN<N, D>, work: &mut VectorN<N, D>) -> Self {
assert!(hess.is_square(), "Cannot compute the hessenberg decomposition of a non-square matrix.");
let dim = hess.data.shape().0;
assert!(dim.value() != 0, "Cannot compute the hessenberg decomposition of an empty matrix.");
assert_eq!(dim.value(), work.len(), "Hessenberg: invalid workspace size.");
let mut subdiag = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
if dim.value() == 0 {
return Hessenberg { hess, subdiag };
}
for ite in 0 .. dim.value() - 1 {
householder::clear_column_unchecked(&mut hess, &mut subdiag[ite], ite, 1, Some(work));
}
Hessenberg { hess, subdiag }
}
#[inline]
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>)
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let q = self.q();
(q, self.unpack_h())
}
#[inline]
pub fn unpack_h(mut self) -> MatrixN<N, D>
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let dim = self.hess.nrows();
self.hess.fill_lower_triangle(N::zero(), 2);
self.hess.slice_mut((1, 0), (dim - 1, dim - 1)).set_diagonal(&self.subdiag);
self.hess
}
#[inline]
pub fn h(&self) -> MatrixN<N, D>
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let dim = self.hess.nrows();
let mut res = self.hess.clone();
res.fill_lower_triangle(N::zero(), 2);
res.slice_mut((1, 0), (dim - 1, dim - 1)).set_diagonal(&self.subdiag);
res
}
pub fn q(&self) -> MatrixN<N, D> {
householder::assemble_q(&self.hess)
}
#[doc(hidden)]
pub fn hess_internal(&self) -> &MatrixN<N, D> {
&self.hess
}
}
impl<N: Real, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> +
Allocator<N, DimDiff<D, U1>> {
pub fn hessenberg(self) -> Hessenberg<N, D> {
Hessenberg::new(self.into_owned())
}
}