1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#[cfg(feature = "serde-serialize")]
use serde;
use alga::general::Real;
use core::{Unit, Matrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
use dimension::{Dim, DimMin, DimMinimum, U1};
use storage::{Storage, StorageMut};
use allocator::{Allocator, Reallocator};
use constraint::{ShapeConstraint, SameNumberOfRows};
use linalg::householder;
use geometry::Reflection;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(serialize =
"DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: serde::Serialize,
VectorN<N, DimMinimum<R, C>>: serde::Serialize")))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(deserialize =
"DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: serde::Deserialize<'de>,
VectorN<N, DimMinimum<R, C>>: serde::Deserialize<'de>")))]
#[derive(Clone, Debug)]
pub struct QR<N: Real, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> {
qr: MatrixMN<N, R, C>,
diag: VectorN<N, DimMinimum<R, C>>,
}
impl<N: Real, R: DimMin<C>, C: Dim> Copy for QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy { }
impl<N: Real, R: DimMin<C>, C: Dim> QR<N, R, C>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R> +
Allocator<N, DimMinimum<R, C>> {
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
let (nrows, ncols) = matrix.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let mut diag = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
if min_nrows_ncols.value() == 0 {
return QR { qr: matrix, diag: diag };
}
for ite in 0 .. min_nrows_ncols.value() {
householder::clear_column_unchecked(&mut matrix, &mut diag[ite], ite, 0, None);
}
QR { qr: matrix, diag: diag }
}
#[inline]
pub fn r(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
res.set_diagonal(&self.diag);
res
}
#[inline]
pub fn unpack_r(self) -> MatrixMN<N, DimMinimum<R, C>, C>
where DefaultAllocator: Reallocator<N, R, C, DimMinimum<R, C>, C>,
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, N::zero());
res.fill_lower_triangle(N::zero(), 1);
res.set_diagonal(&self.diag);
res
}
pub fn q(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.qr.data.shape();
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
let dim = self.diag.len();
for i in (0 .. dim).rev() {
let axis = self.qr.slice_range(i .., i);
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut res_rows = res.slice_range_mut(i .., i ..);
refl.reflect(&mut res_rows);
}
res
}
pub fn unpack(self) -> (MatrixMN<N, R, DimMinimum<R, C>>, MatrixMN<N, DimMinimum<R, C>, C>)
where DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> +
Reallocator<N, R, C, DimMinimum<R, C>, C> {
(self.q(), self.unpack_r())
}
#[doc(hidden)]
pub fn qr_internal(&self) -> &MatrixMN<N, R, C> {
&self.qr
}
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<N, R2, C2, S2>)
where S2: StorageMut<N, R2, C2> {
let dim = self.diag.len();
for i in 0 .. dim {
let axis = self.qr.slice_range(i .., i);
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut rhs_rows = rhs.rows_range_mut(i ..);
refl.reflect(&mut rhs_rows);
}
}
}
impl<N: Real, D: DimMin<D, Output = D>> QR<N, D, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> {
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
where S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<N, R2, C2> {
let mut res = b.clone_owned();
if self.solve_mut(&mut res) {
Some(res)
}
else {
None
}
}
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
where S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D> {
assert_eq!(self.qr.nrows(), b.nrows(), "QR solve matrix dimension mismatch.");
assert!(self.qr.is_square(), "QR solve: unable to solve a non-square system.");
self.q_tr_mul(b);
self.solve_upper_triangular_mut(b)
}
fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
where S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D> {
let dim = self.qr.nrows();
for k in 0 .. b.ncols() {
let mut b = b.column_mut(k);
for i in (0 .. dim).rev() {
let coeff;
unsafe {
let diag = *self.diag.vget_unchecked(i);
if diag.is_zero() {
return false;
}
coeff = *b.vget_unchecked(i) / diag;
*b.vget_unchecked_mut(i) = coeff;
}
b.rows_range_mut(.. i).axpy(-coeff, &self.qr.slice_range(.. i, i), N::one());
}
}
true
}
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
assert!(self.qr.is_square(), "QR inverse: unable to compute the inverse of a non-square matrix.");
let (nrows, ncols) = self.qr.data.shape();
let mut res = MatrixN::identity_generic(nrows, ncols);
if self.solve_mut(&mut res) {
Some(res)
}
else {
None
}
}
pub fn is_invertible(&self) -> bool {
assert!(self.qr.is_square(), "QR: unable to test the invertibility of a non-square matrix.");
for i in 0 .. self.diag.len() {
if self.diag[i].is_zero() {
return false;
}
}
true
}
}
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R> +
Allocator<N, DimMinimum<R, C>> {
pub fn qr(self) -> QR<N, R, C> {
QR::new(self.into_owned())
}
}