Struct nalgebra::linalg::SVD
[−]
[src]
pub struct SVD<N: Real, R: DimMin<C>, C: Dim> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>, {
pub u: Option<MatrixMN<N, R, DimMinimum<R, C>>>,
pub v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>,
pub singular_values: VectorN<N, DimMinimum<R, C>>,
}
Singular Value Decomposition of a general matrix.
Fields
u: Option<MatrixMN<N, R, DimMinimum<R, C>>>
The left-singular vectors U
of this SVD.
v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>
The right-singular vectors V^t
of this SVD.
singular_values: VectorN<N, DimMinimum<R, C>>
The singular values of this SVD.
Methods
impl<N: Real, R: DimMin<C>, C: Dim> SVD<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
[src]
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self
[src]
Computes the Singular Value Decomposition of matrix
using implicit shift.
pub fn try_new(
matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N,
max_niter: usize
) -> Option<Self>
[src]
matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N,
max_niter: usize
) -> Option<Self>
Attempts to compute the Singular Value Decomposition of matrix
using implicit shift.
Arguments
compute_u
− set this totrue
to enable the computation of left-singular vectors.compute_v
− set this totrue
to enable the computation of left-singular vectors.eps
− tolerence used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
pub fn rank(&self, eps: N) -> usize
[src]
Computes the rank of the decomposed matrix, i.e., the number of singular values greater
than eps
.
pub fn recompose(self) -> MatrixMN<N, R, C>
[src]
Rebuild the original matrix.
This is useful if some of the singular values have been manually modified. Panics if the right- and left- singular vectors have not been computed at construction-time.
pub fn pseudo_inverse(self, eps: N) -> MatrixMN<N, C, R> where
DefaultAllocator: Allocator<N, C, R>,
[src]
DefaultAllocator: Allocator<N, C, R>,
Computes the pseudo-inverse of the decomposed matrix.
Any singular value smaller than eps
is assumed to be zero.
Panics if the right- and left- singular vectors have not been computed at
construction-time.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
eps: N
) -> MatrixMN<N, C, C2> where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
[src]
&self,
b: &Matrix<N, R2, C2, S2>,
eps: N
) -> MatrixMN<N, C, C2> where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
Solves the system self * x = b
where self
is the decomposed matrix and x
the unknown.
Any singular value smaller than eps
is assumed to be zero.
Returns None
if the singular vectors U
and V
have not been computed.
Trait Implementations
impl<N: Clone + Real, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
fn clone(&self) -> SVD<N, R, C>
[src]
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<N: Debug + Real, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
fn fmt(&self, __arg_0: &mut Formatter) -> Result
[src]
Formats the value using the given formatter. Read more
impl<N: Real, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,