Struct alga::general::Multiplicative  
                   
                       [−]
                   
               [src]
pub struct Multiplicative;
The multiplication operator, commonly symbolized by ×.
Trait Implementations
impl AbstractMagma<Multiplicative> for u8[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for u16[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for u32[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for u64[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for usize[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for i8[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for i16[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for i32[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for i64[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for isize[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for f32[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractMagma<Multiplicative> for f64[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl AbstractSemigroup<Multiplicative> for u8[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u16[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u32[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u64[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for usize[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractMonoid<Multiplicative> for u8[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for u16[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for u32[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for u64[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for usize[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N>[src]
fn operate(&self, lhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, _: O, lhs: &Self) -> Self[src]
Performs specific operation.
impl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg, [src]
N: Num + Clone + ClosedNeg,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg, [src]
N: Num + Clone + ClosedNeg,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N> AbstractQuasigroup<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg, [src]
N: Num + Clone + ClosedNeg,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if latin squareness holds for the given arguments.
impl<N> AbstractLoop<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg, [src]
N: Num + Clone + ClosedNeg,
impl<N> AbstractGroup<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg, [src]
N: Num + Clone + ClosedNeg,
impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N> where
    N: Num + Clone + ClosedNeg, [src]
N: Num + Clone + ClosedNeg,
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the operator is commutative for the given argument tuple.
impl AbstractSemigroup<Multiplicative> for i8[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i16[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i32[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i64[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for isize[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractMonoid<Multiplicative> for i8[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i16[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i32[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i64[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for isize[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractRing<Additive, Multiplicative> for i8[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for i16[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for i32[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for i64[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for isize[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRingCommutative<Additive, Multiplicative> for i8[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for i16[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for i32[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for i64[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for isize[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractSemigroup<Multiplicative> for f32[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for f64[src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl AbstractMonoid<Multiplicative> for f32[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for f64[src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractRing<Additive, Multiplicative> for f32[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for f64[src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRingCommutative<Additive, Multiplicative> for f32[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for f64[src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractQuasigroup<Multiplicative> for f32[src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if latin squareness holds for the given arguments.
impl AbstractQuasigroup<Multiplicative> for f64[src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if latin squareness holds for the given arguments.
impl AbstractLoop<Multiplicative> for f32[src]
impl AbstractLoop<Multiplicative> for f64[src]
impl AbstractGroup<Multiplicative> for f32[src]
impl AbstractGroup<Multiplicative> for f64[src]
impl AbstractGroupAbelian<Multiplicative> for f32[src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the operator is commutative for the given argument tuple.
impl AbstractGroupAbelian<Multiplicative> for f64[src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if the operator is commutative for the given argument tuple.
impl AbstractField<Additive, Multiplicative> for f32[src]
impl AbstractField<Additive, Multiplicative> for f64[src]
impl Identity<Multiplicative> for u8[src]
fn identity() -> u8[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for u16[src]
fn identity() -> u16[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for u32[src]
fn identity() -> u32[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for u64[src]
fn identity() -> u64[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for usize[src]
fn identity() -> usize[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for i8[src]
fn identity() -> i8[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for i16[src]
fn identity() -> i16[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for i32[src]
fn identity() -> i32[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for i64[src]
fn identity() -> i64[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for isize[src]
fn identity() -> isize[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for f32[src]
fn identity() -> f32[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Identity<Multiplicative> for f64[src]
fn identity() -> f64[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl<N: Num + Clone> Identity<Multiplicative> for Complex<N>[src]
fn identity() -> Self[src]
The identity element.
fn id(_: O) -> Self where
    Self: Sized, [src]
Self: Sized,
Specific identity.
impl Clone for Multiplicative[src]
fn clone(&self) -> Multiplicative[src]
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0[src]
Performs copy-assignment from source. Read more
impl Copy for Multiplicative[src]
impl Operator for Multiplicative[src]
fn operator_token() -> Self[src]
Returns the structure that identifies the operator.
impl Inverse<Multiplicative> for f32[src]
fn inverse(&self) -> f32[src]
Returns the inverse of self, relative to the operator O.
fn inverse_mut(&mut self)[src]
In-place inversin of self.
impl Inverse<Multiplicative> for f64[src]
fn inverse(&self) -> f64[src]
Returns the inverse of self, relative to the operator O.
fn inverse_mut(&mut self)[src]
In-place inversin of self.
impl<N: Num + Clone + ClosedNeg> Inverse<Multiplicative> for Complex<N>[src]
fn inverse(&self) -> Self[src]
Returns the inverse of self, relative to the operator O.
fn inverse_mut(&mut self)[src]
In-place inversin of self.