Trait alga::general::AbstractRing  
                   
                       [−]
                   
               [src]
pub trait AbstractRing<A: Operator = Additive, M: Operator = Multiplicative>: AbstractGroupAbelian<A> + AbstractMonoid<M> {
    fn prop_mul_and_add_are_distributive_approx(
        args: (Self, Self, Self)
    ) -> bool
    where
        Self: ApproxEq,
    { ... }
    fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool
    where
        Self: Eq,
    { ... }
}A ring is the combination of an abelian group and a multiplicative monoid structure.
A ring is equipped with:
- A abstract operator (usually the addition) that fulfills the constraints of an abelian group.
 - A second abstract operator (usually the multiplication) that fulfills the constraints of a monoid.
 
Provided Methods
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, 
Self: ApproxEq,
Returns true if the multiplication and addition operators are distributive for
the given argument tuple. Approximate equality is used for verifications.
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq, 
Self: Eq,
Returns true if the multiplication and addition operators are distributive for
the given argument tuple.