Struct nalgebra::geometry::Isometry
[−]
[src]
#[repr(C)]pub struct Isometry<N: Real, D: DimName, R> where
DefaultAllocator: Allocator<N, D>, { pub rotation: R, pub translation: Translation<N, D>, // some fields omitted }
A direct isometry, i.e., a rotation followed by a translation.
Fields
rotation: R
The pure rotational part of this isometry.
translation: Translation<N, D>
The pure translational part of this isometry.
Methods
impl<N: Real, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn from_parts(
translation: Translation<N, D>,
rotation: R
) -> Isometry<N, D, R>
[src]
translation: Translation<N, D>,
rotation: R
) -> Isometry<N, D, R>
Creates a new isometry from its rotational and translational parts.
pub fn inverse(&self) -> Isometry<N, D, R>
[src]
Inverts self
.
pub fn inverse_mut(&mut self)
[src]
Inverts self
.
pub fn append_translation_mut(&mut self, t: &Translation<N, D>)
[src]
Appends to self
the given translation in-place.
pub fn append_rotation_mut(&mut self, r: &R)
[src]
Appends to self
the given rotation in-place.
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)
[src]
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
[src]
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
impl<N: Real, D: DimName, R> Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Converts this isometry into its equivalent homogeneous transformation matrix.
impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn identity() -> Self
[src]
Creates a new identity isometry.
pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Self
[src]
The isometry that applies the rotation r
with its axis passing through the point p
.
This effectively lets p
invariant.
impl<N: Real> Isometry<N, U2, Rotation2<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N) -> Self
[src]
Creates a new isometry from a translation and a rotation angle.
impl<N: Real> Isometry<N, U2, UnitComplex<N>>
[src]
pub fn new(translation: Vector2<N>, angle: N) -> Self
[src]
Creates a new isometry from a translation and a rotation angle.
impl<N: Real> Isometry<N, U3, Rotation3<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self
[src]
Creates a new isometry from a translation and a rotation axis-angle.
pub fn new_observer_frame(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
Creates an isometry that corresponds to the local frame of an observer standing at the
point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a right-handed look-at view matrix.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a left-handed look-at view matrix.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
impl<N: Real> Isometry<N, U3, UnitQuaternion<N>>
[src]
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self
[src]
Creates a new isometry from a translation and a rotation axis-angle.
pub fn new_observer_frame(
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
[src]
eye: &Point3<N>,
target: &Point3<N>,
up: &Vector3<N>
) -> Self
Creates an isometry that corresponds to the local frame of an observer standing at the
point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a right-handed look-at view matrix.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self
[src]
Builds a left-handed look-at view matrix.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Trait Implementations
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D> where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Rotation<N1, D>>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Rotation<N1, D>>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for UnitQuaternion<N1> where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<UnitQuaternion<N1>>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point3<N2>> + SupersetOf<UnitQuaternion<N1>>,
fn to_superset(&self) -> Isometry<N2, U3, R>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(iso: &Isometry<N2, U3, R>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U3, R>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N: Real> Mul<Isometry<N, U2, UnitComplex<N>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real> Mul<Isometry<N, U2, UnitComplex<N>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real> Mul<&'b Isometry<N, U2, UnitComplex<N>>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real> Mul<&'b Isometry<N, U2, UnitComplex<N>>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, U2, UnitComplex<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for UnitComplex<N1> where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<UnitComplex<N1>>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point2<N2>> + SupersetOf<UnitComplex<N1>>,
fn to_superset(&self) -> Isometry<N2, U2, R>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(iso: &Isometry<N2, U2, R>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(iso: &Isometry<N2, U2, R>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D> where
N1: Real,
N2: Real + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N: Debug + Real, D: Debug + DimName, R: Debug> Debug for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn fmt(&self, __arg_0: &mut Formatter) -> Result
[src]
Formats the value using the given formatter. Read more
impl<N: Real + Hash, D: DimName + Hash, R: Hash> Hash for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
Feeds this value into the given [Hasher
]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<N: Real, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
impl<N: Real, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn clone(&self) -> Self
[src]
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<N: Real, D: DimName, R> Eq for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
impl<N: Real, D: DimName, R> PartialEq for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
fn eq(&self, right: &Isometry<N, D, R>) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl<N: Real, D: DimName, R> ApproxEq for Isometry<N, D, R> where
R: Rotation<Point<N, D>> + ApproxEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
R: Rotation<Point<N, D>> + ApproxEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
The default tolerance to use when testing values that are close together. Read more
fn default_max_relative() -> Self::Epsilon
[src]
The default relative tolerance for testing values that are far-apart. Read more
fn default_max_ulps() -> u32
[src]
The default ULPs to tolerate when testing values that are far-apart. Read more
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
A test for equality that uses a relative comparison if the values are far apart.
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
A test for equality that uses units in the last place (ULP) if the values are far apart.
fn relative_ne(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
The inverse of ApproxEq::relative_eq
.
fn ulps_ne(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
The inverse of ApproxEq::ulps_eq
.
impl<N: Real + Display, D: DimName, R> Display for Isometry<N, D, R> where
R: Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
[src]
R: Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
fn fmt(&self, f: &mut Formatter) -> Result
[src]
Formats the value using the given formatter. Read more
impl<N: Real, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Real + Rand, D: DimName, R> Rand for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>> + Rand,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>> + Rand,
DefaultAllocator: Allocator<N, D>,
fn rand<G: Rng>(rng: &mut G) -> Self
[src]
Generates a random instance of this type using the specified source of randomness. Read more
impl<N: Real, D: DimName, R> Mul<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Div<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, N: Real, D: DimName, R> Div<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'b, N: Real, D: DimName, R> Div<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, N: Real, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<N: Real, D: DimName, R> MulAssign<Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
Performs the *=
operation.
impl<'b, N: Real, D: DimName, R> MulAssign<&'b Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
Performs the *=
operation.
impl<N: Real, D: DimName, R> MulAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
Performs the *=
operation.
impl<'b, N: Real, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
Performs the *=
operation.
impl<N: Real, D: DimName, R> DivAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
Performs the /=
operation.
impl<'b, N: Real, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
Performs the /=
operation.
impl<N: Real, D: DimName, R> MulAssign<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: R)
[src]
Performs the *=
operation.
impl<'b, N: Real, D: DimName, R> MulAssign<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b R)
[src]
Performs the *=
operation.
impl<N: Real, D: DimName, R> DivAssign<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: R)
[src]
Performs the /=
operation.
impl<'b, N: Real, D: DimName, R> DivAssign<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b R)
[src]
Performs the /=
operation.
impl<N: Real, D: DimName, R> Mul<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: R) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b R) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Div<R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
Performs the /
operation.
impl<'a, N: Real, D: DimName, R> Div<R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: R) -> Self::Output
[src]
Performs the /
operation.
impl<'b, N: Real, D: DimName, R> Div<&'b R> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, N: Real, D: DimName, R> Div<&'b R> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b R) -> Self::Output
[src]
Performs the /
operation.
impl<N: Real, D: DimName, R> Mul<Point<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Mul<VectorN<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<VectorN<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: VectorN<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b VectorN<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b VectorN<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = VectorN<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b VectorN<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Mul<Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<Translation<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Mul<Isometry<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, N: Real, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the /
operation.
impl<'b, N: Real, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, N: Real, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, D, Rotation<N, D>>) -> Self::Output
[src]
Performs the /
operation.
impl<N: Real> Mul<Isometry<N, U3, UnitQuaternion<N>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real> Mul<Isometry<N, U3, UnitQuaternion<N>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real> Mul<&'b Isometry<N, U3, UnitQuaternion<N>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real> Mul<&'b Isometry<N, U3, UnitQuaternion<N>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real> Div<Isometry<N, U3, UnitQuaternion<N>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, N: Real> Div<Isometry<N, U3, UnitQuaternion<N>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the /
operation.
impl<'b, N: Real> Div<&'b Isometry<N, U3, UnitQuaternion<N>>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, N: Real> Div<&'b Isometry<N, U3, UnitQuaternion<N>>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Isometry<N, U3, UnitQuaternion<N>>) -> Self::Output
[src]
Performs the /
operation.
impl<N: Real, D: DimName, R> Identity<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: Real, D: DimName, R> Inverse<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse(&self) -> Self
[src]
Returns the inverse of self
, relative to the operator O
.
fn inverse_mut(&mut self)
[src]
In-place inversin of self
.
impl<N: Real, D: DimName, R> AbstractMagma<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn operate(&self, rhs: &Self) -> Self
[src]
Performs an operation.
fn op(&self, O, lhs: &Self) -> Self
[src]
Performs specific operation.
impl<N: Real, D: DimName, R> AbstractSemigroup<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: ApproxEq,
[src]
Self: ApproxEq,
Returns true
if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
Returns true
if associativity holds for the given arguments.
impl<N: Real, D: DimName, R> AbstractMonoid<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: ApproxEq,
[src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N: Real, D: DimName, R> AbstractQuasigroup<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: ApproxEq,
[src]
Self: ApproxEq,
Returns true
if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
Returns true
if latin squareness holds for the given arguments.
impl<N: Real, D: DimName, R> AbstractLoop<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: Real, D: DimName, R> AbstractGroup<Multiplicative> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: Real, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Applies this group's action on a point from the euclidean space.
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Applies this group's action on a vector from the euclidean space. Read more
impl<N: Real, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Applies this group's inverse action on a point from the euclidean space.
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Applies this group's inverse action on a vector from the euclidean space. Read more
impl<N: Real, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Rotation = R
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Translation<N, D>
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Translation<N, D>, R, Id, R)
[src]
Decomposes this affine transformation into a rotation followed by a non-uniform scaling, followed by a rotation, followed by a translation. Read more
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
Appends a translation to this similarity.
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
Prepends a translation to this similarity.
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
Appends a rotation to this similarity.
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
Prepends a rotation to this similarity.
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
Appends a scaling factor to this similarity.
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
Prepends a scaling factor to this similarity.
fn append_rotation_wrt_point(
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
[src]
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<N: Real, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Translation<N, D>
[src]
The pure translational component of this similarity transformation.
fn rotation(&self) -> R
[src]
The pure rotational component of this similarity transformation.
fn scaling(&self) -> Id
[src]
The pure scaling component of this similarity transformation.
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: Real, D: DimName, R> AlgaIsometry<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: Real, D: DimName, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1, D, R1> where
N1: Real,
N2: Real + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R2>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(iso: &Isometry<N2, D, R2>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1> where
N1: Real,
N2: Real + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
R2: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R2>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R> where
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Transform<N2, D, C>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, D, C>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Isometry<N1, D, R> where
N1: Real,
N2: Real + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
[src]
N1: Real,
N2: Real + SupersetOf<N1>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>
[src]
The inclusion map: converts self
to the equivalent element of its superset.
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool
[src]
Checks if element
is actually part of the subset Self
(and can be converted to it).
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self
[src]
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N: Real, D: DimName, R> MulAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
Performs the *=
operation.
impl<'b, N: Real, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
Performs the *=
operation.
impl<N: Real, D: DimName, R> DivAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
Performs the /=
operation.
impl<'b, N: Real, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
Performs the /=
operation.
impl<N: Real, D: DimName, R> Mul<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Div<Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, N: Real, D: DimName, R> Div<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'b, N: Real, D: DimName, R> Div<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, N: Real, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<N: Real, D: DimName, R> Mul<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N: Real, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N: Real, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N: Real, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<N: Real, D: DimName, R> Div<Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, N: Real, D: DimName, R> Div<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: Similarity<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'b, N: Real, D: DimName, R> Div<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, N: Real, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Similarity<N, D, R>) -> Self::Output
[src]
Performs the /
operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output
[src]
Performs the *
operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
Performs the *
operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Isometry<N, D, R> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
Performs the *
operation.
impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)
[src]
Performs the *=
operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Isometry<N, D, R>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)
[src]
Performs the *=
operation.