Struct nalgebra::geometry::Transform  
                   
                       [−]
                   
               [src]
#[repr(C)]pub struct Transform<N: Real, D: DimNameAdd<U1>, C: TCategory> where
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, { /* fields omitted */ }
A transformation matrix in homogeneous coordinates.
It is stored as a matrix with dimensions (D + 1, D + 1), e.g., it stores a 4x4 matrix for a
3D transformation.
Methods
impl<N: Real, D: DimNameAdd<U1>, C: TCategory> Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
pub fn from_matrix_unchecked(matrix: MatrixN<N, DimNameSum<D, U1>>) -> Self[src]
Creates a new transformation from the given homogeneous matrix. The transformation category
of Self is not checked to be verified by the given matrix.
pub fn unwrap(self) -> MatrixN<N, DimNameSum<D, U1>>[src]
The underlying matrix.
pub fn matrix(&self) -> &MatrixN<N, DimNameSum<D, U1>>[src]
A reference to the underlynig matrix.
pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, DimNameSum<D, U1>>[src]
A mutable reference to the underlying matrix.
It is _unchecked because direct modifications of this matrix may break invariants
identified by this transformation category.
pub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> Transform<N, D, CNew>[src]
Sets the category of this transform.
This can be done only if the new category is more general than the current one, e.g., a
transform with category TProjective cannot be converted to a transform with category
TAffine because not all projective transformations are affine (the other way-round is
valid though).
pub fn clone_owned(&self) -> Transform<N, D, C>[src]
: This method is a no-op and will be removed in a future release.
Clones this transform into one that owns its data.
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>[src]
Converts this transform into its equivalent homogeneous transformation matrix.
pub fn try_inverse(self) -> Option<Transform<N, D, C>>[src]
Attempts to invert this transformation. You may use .inverse instead of this
transformation has a subcategory of TProjective.
pub fn inverse(self) -> Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>, [src]
C: SubTCategoryOf<TProjective>,
Inverts this transformation. Use .try_inverse if this transform has the TGeneral
category (it may not be invertible).
pub fn try_inverse_mut(&mut self) -> bool[src]
Attempts to invert this transformation in-place. You may use .inverse_mut instead of this
transformation has a subcategory of TProjective.
pub fn inverse_mut(&mut self) where
    C: SubTCategoryOf<TProjective>, [src]
C: SubTCategoryOf<TProjective>,
Inverts this transformation in-place. Use .try_inverse_mut if this transform has the
TGeneral category (it may not be invertible).
impl<N: Real, D: DimNameAdd<U1>> Transform<N, D, TGeneral> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
pub fn matrix_mut(&mut self) -> &mut MatrixN<N, DimNameSum<D, U1>>[src]
A mutable reference to underlying matrix. Use .matrix_mut_unchecked instead if this
transformation category is not TGeneral.
impl<N: Real, D: DimNameAdd<U1>, C: TCategory> Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
            DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Trait Implementations
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Rotation<N1, D> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>, [src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>,
fn to_superset(&self) -> Transform<N2, D, C>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, D, C>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N1, N2, C> SubsetOf<Transform<N2, U3, C>> for UnitQuaternion<N1> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>, [src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
fn to_superset(&self) -> Transform<N2, U3, C>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, U3, C>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, U3, C>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N1, N2, C> SubsetOf<Transform<N2, U2, C>> for UnitComplex<N1> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>, [src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
fn to_superset(&self) -> Transform<N2, U2, C>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, U2, C>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, U2, C>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Translation<N1, D> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn to_superset(&self) -> Transform<N2, D, C>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, D, C>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>, [src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Transform<N2, D, C>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, D, C>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Similarity<N1, D, R> where
    N1: Real,
    N2: Real + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, D, D> + Allocator<N2, D>, [src]
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, D, D> + Allocator<N2, D>,
fn to_superset(&self) -> Transform<N2, D, C>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, D, C>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N: Debug + Real, D: Debug + DimNameAdd<U1>, C: Debug + TCategory> Debug for Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn fmt(&self, __arg_0: &mut Formatter) -> Result[src]
Formats the value using the given formatter. Read more
impl<N: Real, D: DimNameAdd<U1> + Copy, C: TCategory> Copy for Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Copy, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Owned<N, DimNameSum<D, U1>, DimNameSum<D, U1>>: Copy,
impl<N: Real, D: DimNameAdd<U1>, C: TCategory> Clone for Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn clone(&self) -> Self[src]
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0[src]
Performs copy-assignment from source. Read more
impl<N: Real + Eq, D: DimNameAdd<U1>, C: TCategory> Eq for Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
impl<N: Real, D: DimNameAdd<U1>, C: TCategory> PartialEq for Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn eq(&self, right: &Self) -> bool[src]
This method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
This method tests for !=.
impl<N: Real, D: DimNameAdd<U1>, C: TCategory> One for Transform<N, D, C> where
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
impl<N: Real, D, C: TCategory> Index<(usize, usize)> for Transform<N, D, C> where
    D: DimName + DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
D: DimName + DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = N
The returned type after indexing.
ⓘImportant traits for &'a mut Ifn index(&self, ij: (usize, usize)) -> &N[src]
Performs the indexing (container[index]) operation.
impl<N: Real, D> IndexMut<(usize, usize)> for Transform<N, D, TGeneral> where
    D: DimName + DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
D: DimName + DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
ⓘImportant traits for &'a mut Ifn index_mut(&mut self, ij: (usize, usize)) -> &mut N[src]
Performs the mutable indexing (container[index]) operation.
impl<N, D: DimNameAdd<U1>, C: TCategory> Mul<VectorN<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = VectorN<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: VectorN<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategory> Mul<VectorN<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = VectorN<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: VectorN<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b VectorN<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = VectorN<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b VectorN<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b VectorN<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = VectorN<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b VectorN<N, D>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: Point<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: Point<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Point<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Point<N, D>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: TCategory> Mul<Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, CB>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: TCategory> Mul<Transform<N, D, CB>> for &'a Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, CB>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: TCategory> Mul<&'b Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, CB>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: TCategory> Mul<&'b Transform<N, D, CB>> for &'a Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, CB>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Rotation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Rotation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Rotation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Rotation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Rotation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Rotation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<N, C: TCategoryMul<TAffine>> Mul<UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: UnitQuaternion<N>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, C: TCategoryMul<TAffine>> Mul<UnitQuaternion<N>> for &'a Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: UnitQuaternion<N>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, C: TCategoryMul<TAffine>> Mul<&'b UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b UnitQuaternion<N>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, C: TCategoryMul<TAffine>> Mul<&'b UnitQuaternion<N>> for &'a Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b UnitQuaternion<N>) -> Self::Output[src]
Performs the * operation.
impl<N, C: TCategoryMul<TAffine>> Mul<Transform<N, U3, C>> for UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, U3, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, C: TCategoryMul<TAffine>> Mul<Transform<N, U3, C>> for &'a UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, U3, C>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, U3, C>> for UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, U3, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, U3, C>> for &'a UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, U3, C>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Isometry<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Isometry<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Similarity<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Similarity<N, D, R>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Similarity<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Similarity<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Similarity<N, D, R>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Similarity<N, D, R>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Similarity<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Similarity<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Similarity<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Similarity<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Translation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Translation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Translation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Translation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Translation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Translation<N, D>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for &'a Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for &'a Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the * operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the * operation.
impl<N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: SubTCategoryOf<TProjective>> Div<Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, D, CB>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: SubTCategoryOf<TProjective>> Div<Transform<N, D, CB>> for &'a Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, D, CB>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: SubTCategoryOf<TProjective>> Div<&'b Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, D, CB>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, CA: TCategoryMul<CB>, CB: SubTCategoryOf<TProjective>> Div<&'b Transform<N, D, CB>> for &'a Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
type Output = Transform<N, D, CA::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, D, CB>) -> Self::Output[src]
Performs the / operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Rotation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Rotation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Rotation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Rotation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Rotation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Rotation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<N, C: TCategoryMul<TAffine>> Div<UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: UnitQuaternion<N>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, C: TCategoryMul<TAffine>> Div<UnitQuaternion<N>> for &'a Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: UnitQuaternion<N>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, C: TCategoryMul<TAffine>> Div<&'b UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b UnitQuaternion<N>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, C: TCategoryMul<TAffine>> Div<&'b UnitQuaternion<N>> for &'a Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1> + Allocator<N, U4, U1>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b UnitQuaternion<N>) -> Self::Output[src]
Performs the / operation.
impl<N, C: TCategoryMul<TAffine>> Div<Transform<N, U3, C>> for UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, U3, C>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, C: TCategoryMul<TAffine>> Div<Transform<N, U3, C>> for &'a UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, U3, C>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, C: TCategoryMul<TAffine>> Div<&'b Transform<N, U3, C>> for UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, U3, C>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, C: TCategoryMul<TAffine>> Div<&'b Transform<N, U3, C>> for &'a UnitQuaternion<N> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U4, U4> + Allocator<N, U4, U4>,
type Output = Transform<N, U3, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, U3, C>) -> Self::Output[src]
Performs the / operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Translation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Translation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Translation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Translation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Translation<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Translation<N, D>) -> Self::Output[src]
Performs the / operation.
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for &'a Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for &'a Translation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the / operator.
fn div(self, rhs: &'b Transform<N, D, C>) -> Self::Output[src]
Performs the / operation.
impl<N, D: DimNameAdd<U1>, CA: TCategory, CB: SubTCategoryOf<CA>> MulAssign<Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn mul_assign(&mut self, rhs: Transform<N, D, CB>)[src]
Performs the *= operation.
impl<'b, N, D: DimNameAdd<U1>, CA: TCategory, CB: SubTCategoryOf<CA>> MulAssign<&'b Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn mul_assign(&mut self, rhs: &'b Transform<N, D, CB>)[src]
Performs the *= operation.
impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Similarity<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Similarity<N, D, R>)[src]
Performs the *= operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Similarity<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Similarity<N, D, R>)[src]
Performs the *= operation.
impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Isometry<N, D, R>)[src]
Performs the *= operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Isometry<N, D, R>)[src]
Performs the *= operation.
impl<N, D: DimNameAdd<U1>, C: TCategory> MulAssign<Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Translation<N, D>)[src]
Performs the *= operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> MulAssign<&'b Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)[src]
Performs the *= operation.
impl<N, D: DimNameAdd<U1>, C: TCategory> MulAssign<Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
fn mul_assign(&mut self, rhs: Rotation<N, D>)[src]
Performs the *= operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> MulAssign<&'b Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
fn mul_assign(&mut self, rhs: &'b Rotation<N, D>)[src]
Performs the *= operation.
impl<N, C: TCategory> MulAssign<UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>,
fn mul_assign(&mut self, rhs: UnitQuaternion<N>)[src]
Performs the *= operation.
impl<'b, N, C: TCategory> MulAssign<&'b UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>,
fn mul_assign(&mut self, rhs: &'b UnitQuaternion<N>)[src]
Performs the *= operation.
impl<N, D: DimNameAdd<U1>, CA: SuperTCategoryOf<CB>, CB: SubTCategoryOf<TProjective>> DivAssign<Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn div_assign(&mut self, rhs: Transform<N, D, CB>)[src]
Performs the /= operation.
impl<'b, N, D: DimNameAdd<U1>, CA: SuperTCategoryOf<CB>, CB: SubTCategoryOf<TProjective>> DivAssign<&'b Transform<N, D, CB>> for Transform<N, D, CA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn div_assign(&mut self, rhs: &'b Transform<N, D, CB>)[src]
Performs the /= operation.
impl<N, D: DimNameAdd<U1>, C: TCategory> DivAssign<Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn div_assign(&mut self, rhs: Translation<N, D>)[src]
Performs the /= operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> DivAssign<&'b Translation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn div_assign(&mut self, rhs: &'b Translation<N, D>)[src]
Performs the /= operation.
impl<N, D: DimNameAdd<U1>, C: TCategory> DivAssign<Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
fn div_assign(&mut self, rhs: Rotation<N, D>)[src]
Performs the /= operation.
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> DivAssign<&'b Rotation<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
fn div_assign(&mut self, rhs: &'b Rotation<N, D>)[src]
Performs the /= operation.
impl<N, C: TCategory> DivAssign<UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>,
fn div_assign(&mut self, rhs: UnitQuaternion<N>)[src]
Performs the /= operation.
impl<'b, N, C: TCategory> DivAssign<&'b UnitQuaternion<N>> for Transform<N, U3, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
    DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>, [src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + Real,
DefaultAllocator: Allocator<N, U4, U4> + Allocator<N, U4, U1>,
fn div_assign(&mut self, rhs: &'b UnitQuaternion<N>)[src]
Performs the /= operation.
impl<N: Real, D: DimNameAdd<U1>, C> Identity<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
impl<N: Real, D: DimNameAdd<U1>, C> Inverse<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn inverse(&self) -> Self[src]
Returns the inverse of self, relative to the operator O.
fn inverse_mut(&mut self)[src]
In-place inversin of self.
impl<N: Real, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn operate(&self, rhs: &Self) -> Self[src]
Performs an operation.
fn op(&self, O, lhs: &Self) -> Self[src]
Performs specific operation.
impl<N: Real, D: DimNameAdd<U1>, C> AbstractSemigroup<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if associativity holds for the given arguments.
impl<N: Real, D: DimNameAdd<U1>, C> AbstractMonoid<Multiplicative> for Transform<N, D, C> where
    C: TCategory,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq, [src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N: Real, D: DimNameAdd<U1>, C> AbstractQuasigroup<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: ApproxEq, [src]
Self: ApproxEq,
Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq, [src]
Self: Eq,
Returns true if latin squareness holds for the given arguments.
impl<N: Real, D: DimNameAdd<U1>, C> AbstractLoop<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
impl<N: Real, D: DimNameAdd<U1>, C> AbstractGroup<Multiplicative> for Transform<N, D, C> where
    C: SubTCategoryOf<TProjective>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, [src]
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C> where
    N: Real,
    C: TCategory,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>, [src]
N: Real,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>[src]
Applies this group's action on a point from the euclidean space.
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>[src]
Applies this group's action on a vector from the euclidean space. Read more
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C> where
    N: Real,
    C: SubTCategoryOf<TProjective>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>, [src]
N: Real,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>[src]
Applies this group's inverse action on a point from the euclidean space.
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>[src]
Applies this group's inverse action on a vector from the euclidean space. Read more
impl<N1, N2, D: DimName, C1, C2> SubsetOf<Transform<N2, D, C2>> for Transform<N1, D, C1> where
    N1: Real + SubsetOf<N2>,
    N2: Real,
    C1: TCategory,
    C2: SuperTCategoryOf<C1>,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    N1::Epsilon: Copy,
    N2::Epsilon: Copy, [src]
N1: Real + SubsetOf<N2>,
N2: Real,
C1: TCategory,
C2: SuperTCategoryOf<C1>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
N1::Epsilon: Copy,
N2::Epsilon: Copy,
fn to_superset(&self) -> Transform<N2, D, C2>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(t: &Transform<N2, D, C2>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C2>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<N1, N2, D: DimName, C> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Transform<N1, D, C> where
    N1: Real + SubsetOf<N2>,
    N2: Real,
    C: TCategory,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    N1::Epsilon: Copy,
    N2::Epsilon: Copy, [src]
N1: Real + SubsetOf<N2>,
N2: Real,
C: TCategory,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
N1::Epsilon: Copy,
N2::Epsilon: Copy,
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>[src]
The inclusion map: converts self to the equivalent element of its superset.
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool[src]
Checks if element is actually part of the subset Self (and can be converted to it).
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self[src]
Use with care! Same as self.to_superset but without any property checks. Always succeeds.
fn from_superset(element: &T) -> Option<Self>[src]
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more